
research papers

168 Mu and Makowski � Fiber diffraction Acta Cryst. (2000). A56, 168±177

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 17 May 1999

Accepted 26 November 1999

# 2000 International Union of Crystallography

Printed in Great Britain ± all rights reserved

The likelihood function in fiber diffraction

Xiang-Qi Mu* and Lee Makowski

Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.

Correspondence e-mail: mu@sb.fsu.edu

The likelihood function is an appropriate target function for re®nement of

molecular structures using ®ber diffraction data. However, its practical

application to ®ber diffraction faces two signi®cant obstacles: (i) the intensities

of layer lines in a ®ber diffraction pattern usually arise from the superposition of

several terms, each equivalent to a crystallographic structure factor, thereby

making the calculation signi®cantly more complex than for the crystallographic

case; (ii) to describe a molecular structure at the atomic level based on ®ber

diffraction data, the radial and phase parts of the atomic coordinates must be

treated separately owing to the uniaxial symmetry of the structure. These issues

are addressed here in order to derive equations of likelihood functions for ®ber

diffraction. The special case of a single term on a layer line is treated ®rst

followed by extension of the method to the multiterm case. A practical dif®culty

in implementation of likelihood for the multiterm case is that each term has

a different variance. An analytical technique is described that allows the

conversion of the unequal-variance case to an equal-variance case. This makes it

possible to express the likelihood by an explicit formula, allowing a direct

implementation of the likelihood calculation. A cylindrically symmetric model is

proposed for error distribution of the atomic coordinates in a helical structure.

Variances and offset coef®cients of the contributing terms in the likelihood

functions are expressed in terms of the variance of the atomic coordinates in the

cylindrical reference system.

1. Introduction

Crystalline macromolecular structures are usually re®ned by

searching for the global minimum of a target function. This

function is comprised of two parts: an energy part and an

experimental data part. In X-ray crystallography, the data part

of the target function is usually a least-squares residualP
w�jFoj ÿ kjFcj�2, where jFoj and jFcj are the observed and

calculated structure amplitudes, and k is a scale factor (e.g.

Hendrickson, 1985; BruÈ nger et al., 1987). Unfortunately, as

many authors have pointed out (Bricogne, 1991, 1993; Read,

1990; Pannu & Read, 1996), a least-squares re®nement is not

appropriate for this problem because of the form of the

expected errors.

The errors in the structure factors come from many sources.

According to the central limit theorem, when these errors are

added together the overall expected error has a Gaussian

distribution. The problem is that while the structure factors

(usually complex numbers) have errors with Gaussian distri-

bution, the errors in the structure amplitudes (their `lengths')

may have a non-Gaussian distribution. The least-squares

re®nement is less likely to succeed for a non-Gaussian distri-

bution of errors. Because of this, a better target function, the

likelihood function, should be used for re®nement of macro-

molecular structures. (Bricogne, 1991, 1993; Read, 1990;

Pannu & Read, 1996).

The situation for ®ber diffraction is more complex. The

sample for ®ber diffraction is typically composed of parallel or

nearly parallel diffracting units, randomly rotated about a

common axis. The resulting ®ber diffraction pattern corre-

sponds to the cylindrical average of the diffraction expected

from a single diffracting unit. Usually the intensity in the

pattern, I�R; l=c� (where l is the layer-line number, c is the

subunit rise along the ®ber axis and R the distance from the

meridian of the pattern), is the superposition of several

components, each corresponding to a cylindrical harmonic of

different order. In diffraction from a helix, the number of

cylindrical harmonics contributing to a given layer line is

limited to those satisfying simple selection rules (Cochran et

al., 1952). Because the cylindrical expansion of a function is

made as a sum of Bessel functions, the terms in the expansion

are refered to as Bessel components. The number of Bessel

components contributing to I�R; l=c� increases with R, greatly

increasing the dif®culty of solving structures at high resolu-

tion.

In a diffraction experiment, structural amplitudes are the

observed quantities. For an acentric crystal, they are absolute

values of complex numbers. For ®ber diffraction, however,

they are usually the norm of a multidimensional vector. To

calculate this norm, an integral must be performed in this

multidimensional space. Estimation of errors in structure

amplitudes requires explicit analysis of the propagation of



errors during this complex procedure. Some work has been

performed on the statistics of ®ber diffraction, i.e. estimate of

the largest likely values for ®ber diffraction R factors (Stubbs,

1989; Millane, 1989a), and this work provides a basis for some

of the analysis presented here. Similar problems arise in the

analysis of intensity overlap in X-ray powder diffraction and

Bricogne (1991) demonstrated that likelihood is a better

target function for structure re®nement against overlapped

data than a least-squares residual function.

Intensity overlapping also makes the phase problem in ®ber

diffraction more complicated than that in crystallography

(Stubbs & Diamond, 1975; Namba & Stubbs, 1985). The

observed intensity has to be decomposed into its components

®rst, followed by determining the phases for each. An

approach based on Bayesian statistics has been suggested

recently for this problem (Millane & Baskaran, 1997;

Baskaran & Millane, 1997, 1998, 1999a, 1999b). Simulations

show that its performance is superior to that of other tech-

niques.

In this paper, we present the formulation of the likelihood

functions in ®ber diffraction in order to enable their use in the

re®nement of helical structures. The atomic coordinates in a

crystal are usually described in a Cartesian coordinate system.

For crystals, it is assumed that the error distribution is

spherically symmetric and that all atoms possess the same

error distribution. In a helical structure, the atomic coordi-

nates are usually expressed in a cylindrical system, denoted by

(r; '; z). The assumption of identical error distributions in a

Cartesian system corresponds to errors in ', the angular

coordinate, that vary with r, the radial coordinate. This greatly

complicates the formulation of the likelihood functions. In this

paper, a cylindrically symmetric model is proposed for the

distribution of atomic coordinate errors and the radial varia-

tion of error in ' is taken into consideration. Finally, all

formulas are expressed in terms of atomic coordinates and

their errors in a cylindrical coordinate system.

2. Preliminaries

The observed intensities of layer lines in a ®ber diffraction

pattern are cylindrically averaged:

hI�R; l=c�i � PK
k�1

�A2
k � B2

k�; �1�

where Ak and Bk may be written as (Stubbs, 1989)

Ak �
PN
j�1

fj Jn�2�Rrj� cos �j �2�

Bk �
PN
j�1

fj Jn�2�Rrj� sin �j; �3�

where N is the total number of atoms in a subunit and

�j � ÿn'j � 2�lzj=c: �4�
�rj; 'j; zj� are atomic coordinates in a cylindrical coordinate

system and the Bessel orders (n) for layer line l are limited to

those satisfying the selection rule (Cochran et al., 1952). At

any given resolution, K is ®nite and determined by the reso-

lution and the maximum radius of the diffracting particle.

The square root of the intensity, hIi1=2, may be considered as

the `length', or Euclidean norm, of a 2K-dimensional vector:

GG �

A1

B1

A2

B2

..

.

AK

BK

0BBBBBBBBB@

1CCCCCCCCCA
: �5�

The likelihood function for ®ber diffraction is proportional to

the conditional probability that the observations would be

made, given a particular structural model and measurement

errors. The proportionality constant may be set equal to one

because our main concern is determining the structural

parameters corresponding to the maximum likelihood for a

model based on ®ber diffraction data. The likelihood is

de®ned as:

L � P��jGGoj�all reflections; �jGGcj�all reflections�; �6�
where jGGoj is the square root of the observed intensity with

experimental errors, jGGcj is that calculated based on a struc-

tural model and P�x; y� is the conditional probability of x given

y. Assuming that all re¯ections are independent, the compli-

cated probability function, equation (6), reduces to a product

of conditional probabilities of individual re¯ections:

L � Q
all reflections

P�jGGoj; jGGcj�: �7�

If the distribution of the experimental error is P�jGGoj ÿ jGGj�,
then

P�jGGoj; jGGcj� � P�jGGj; jGGcj� � P�jGGoj ÿ jGGj�; �8�
where � denotes convolution and GG is the true structure factor.

P�jGGj; jGGcj� on the right-hand side of the equation is the

probability distribution of the true structure amplitudes given

the atomic coordinates and the expected errors.

3. Errors of atomic coordinates in a cylindrical system

The atomic coordinates in a crystal are usually expressed in a

Cartesian coordinate system. It is assumed in crystallography

that the error distribution of these coordinates is spherically

symmetric about the center of mass of an atom and that all

atoms possess the same error distribution. It is also reasonable

to assume a symmetric error distribution for atomic coordi-

nates in a helical structure and assume that the distribution is

the same for all atoms in the structure. As shown later,

assuming that the error distribution has cylindrical symmetry

greatly facilitates the analysis of errors in the atomic coordi-

nates in a ®ber. The assumption of identical error distributions

is usually made in the Cartesian coordinate system.

The standard coordinate system in the ®eld of ®ber

diffraction is the cylindrical system. It is convenient to

describe the errors of atomic coordinates within the ®ber in a
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local cylindrical reference system with its origin at the center

of mass of the atom and its axis parallel with the ®ber axis.

(t; �; !) are used to denote a particular value of the coordinate

error. The error distribution is assumed to be cylindrically

symmetric, i.e. it is independent of �. The variance of the

distribution in the plane perpendicular to the ®ber axis is

denoted by �2
t . The error in the third direction (along !) is

independent of that on the plane and its variance is �2
!. For

simplicity, we assume that �2 � �2
t � �2

!. If the error distri-

bution is Gaussian, an expected value of any function of t, �
and !, f �t; �; !�, may be calculated as

E � �1=�8�3�1=2�3� R1
0

R2�
0

R1
ÿ1

f �t; �; !�

� exp�ÿt2=2�2� exp�ÿ!2=2�2�t dt d� d!: �9�
It is assumed that all atoms in the ®ber possess the same error

distribution, i.e. the variance �2 is the same for all atoms. The

atomic coordinates in the ®ber reference system, denoted

by (r; '; z), is changed, for example, from (r; 0; 0) to

(r��r;�';�z) owing to the errors, as shown in Fig. 1. The

variations of the coordinates are related with the errors

(t; �; !):

�r � �r2 � t2 � 2rt cos��1=2 ÿ r

�' � arctan�t sin �=�r� t cos���
�z � !:

8><>: �10�

h�ri, h�r2i, h�'i and h�'2i can be calculated using (9).

Usually, all of these expected values are r dependent.

However, the dependence is signi®cant only when the atom is

located near the ®ber axis. The results of numerical calcula-

tions are shown over a wide range of r in Figs. 2 and 3. For any

noncentral atoms (e.g. r � 5�), h�ri is nearly zero (i.e.< 0:1�)

and �h�r2i�1=2 is very close to � (within 99.5%). Similarly, we

have h�'i � 0 and �h�'2i�1=2 � �=r for noncentral atoms.

Also for noncentral atoms, the variance of �, de®ned in (4), is

h��2i � �2�n2=r2 � 4�2l2=c2�: �11�

In addition to the variance of coordinate �2, the variance

h��2i depends also upon n, l and atomic coordinate r. It

increases sharply with increasing n and/or l. It can be very

large for high-order layer lines and/or for large-order Bessel

terms. hcos ��i is needed for calculation of the likelihood

function, as shown later. For noncentral atoms, �' � t sin �=r

and hcos ��i can be derived as follows:

hcos ��i � �1=�8�3�1=2�3� R1
0

R2�
0

R1
ÿ1

cos�ÿ�nt=r� sin �� 2�l!=c�

� exp�ÿt2=2�2� exp�ÿ!2=2�2�t dt d� d! �12�
� �1=�8�3�1=2�3� R1

0

t exp�ÿt2=2�2�

� R2�
0

cos��nt=r� sin �� d�
� �

dt

� R1
ÿ1

cos�2�l!=c� exp�ÿ!2=2�2� d!: �13�

The second integral in formula (13) is the integral repre-

sentation of a Bessel function of zero order (Abramowitz &

Stegun, 1970, p. 360). The third one is the Fourier cosine

transform of the function exp�ÿ!2=2�2�. So we have

hcos ��i � ��2��1=2�=�8�3�1=2�3� exp�ÿ2�2l2�2=c2�
� R1

0

t exp�ÿt2=2�2�2�J0�nt=r� dt �14�

� exp�ÿ��2=2��n2=r2 � 4�2l2=c2�� �15�
� exp�ÿ 1

2 h��2i�: �16�
The result of integration in (14) was taken from Gradshteyn &

Ryzhik (1994, p. 738). As shown in (15) or (16), hcos ��i may

quickly converge to zero when h��2i is large.

Figure 1
Atomic coordinates in a ®ber reference system (origin at OF ) and error
distribution in a local cylindrical system (origin at OA). This is a
projection of both systems down the ®ber axis. The coordinates of atom
A, located at OA, are (r; 0; 0). The distribution of coordinate errors is
cylindrically symmetric around the atom with its symmetric axis parallel
to the ®ber axis. A speci®c value of the error in the local system is
(t; �;w). The atomic coordinates are changed from (r; 0; 0) to
(r��r;�';w) owing to this error.

Figure 2
The averaged error of r, h�ri, and the standard deviation of r, h�r2i1=2, for
the cylindrically symmetric Gaussian distribution of coordinate errors.
The curve of h�ri against r and that of h�r2i1=2 against r for error
distribution of variance � � 0:5, � � 0:75 and � � 1:0 AÊ are shown.
When r is larger than 5�, h�ri � 0 and h�r2i1=2 � �.



A similar derivation shows that hsin ��i � 0.

4. Likelihood for the case of a single Bessel term

For the special case of a single Bessel-function term on a layer

line, the problem reduces to one analogous to an acentric

crystal except that special consideration must be made for the

atomic coordinates in the ®ber structure. In (1), K becomes 1

and A and B (the subscript can be omitted in the single-Bessel-

term case) correspond to the real and imaginary parts of

crystalline diffraction. In the most general case for a crystal,

the corresponding conditional probability is

P�F; Fc� � �1=2��2
c � exp�ÿjFÿDFcj2=2�2

c �; �17�
where F and Fc are structure factors of the true structure and

of a related structural model, respectively, P�F; Fc� is a two-

dimensional Gaussian with centroid of DFc and variance of �2
c

(e.g. Read, 1990; Bricogne, 1991). The conditional probability

distribution of structure amplitudes may be developed based

on it (e.g. Read, 1990).

Equation (17) is also valid for the special case of ®ber

diffraction in which only a single Bessel-function term makes a

contribution to a layer line. Usually, we use G and Gc for ®ber

diffraction in place of F and Fc. The conditional probability

P�jGj; jGcj� may be derived from (17) (e.g. Bricogne, 1991) as

P�jGj; jGcj� � �jGj=�2
F� exp�ÿ�jGj2 �D2

F jGcj2�=2�2
F �

� I0�DF jGjjGcj=�2
F�; �18�

where I0 is the modi®ed Bessel function of the ®rst kind of

zero order. This equation is similar in form to that for an

acentric crystal (Read, 1990). To use it for ®ber diffraction, we

need to know both the relationship between the offset coef-

®cient, DF , and the atomic coordinates with errors in a

cylindrical coordinate system and that between the variance,

�2
F , and the coordinates. These relationships are shown as

follows. Details of the derivation are in Appendix A.

DF � S1 � 4�2R2S2�
2 �19�

and

�2
F � S3 � 4�2R2S4�

2; �20�
where the coef®cients S1, S2, S3 and S4 are

S1 �
PN

j�1 fjhcos ��jiJn�2�Rrj� cos �jPN
j�1 fj Jn�2�Rrj� cos �j

�21�

S2 � 1
2

PN
j�1 fjhcos ��jiJ00n�2�Rrj� cos �jPN

j�1 fj Jn�2�Rrj� cos �j

�22�

S3 � 1
2

PN
j�1

f 2
j �1ÿ hcos ��ji2��Jn�2�Rrj��2 �23�

and

S4 � 1
2

PN
j�1

f 2
j �J0n�2�Rrj��2; �24�

where J0n and J00n are the ®rst and second derivatives of Bessel

function Jn with respect to rj.

It is often more convenient to work with an intensity-based

likelihood function. If jGj � I1=2, (18) becomes

P�I; Ic� �
1

2�2
F

� �
exp ÿ I �D2

FIc

2�2
F

� �
I0

DF�IIc�1=2

�2
F

� �
: �25�

In most cases, it is reasonable to assume that the distribution

of measurement error is a Gaussian with standard deviation of

�o. In that case, following the derivation of Pannu & Read

(1996) for the case of an acentric crystal, we obtain

P�Io; Ic� �
1

2�2��1=2�2
F

exp ÿ I2
o

2�2
o

ÿD2
FIc

2�2
F

� �
�
X1
t�0

1

t!

�oD2
FIc

4�4
F

� �t

exp
x2

4

� �
Dÿtÿ1�x�; �26�

where Dÿtÿ1�x� is a parabolic cylinder function (Abramowitz

& Stegun, 1970, p. 687) and

x � ��2
o ÿ 2�2

FIo�=2�o�
2
F : �27�

5. Likelihood for the case of multiple Bessel terms

Usually more than one Bessel-function terms make contri-

butions to the layer-line intensities in a ®ber diffraction

pattern. The conditional probability in this case is

P�GG;GGc� �
QK
k�1

�1=2��2
k� expfÿ��Ak ÿDkAck�2

� �Bk ÿDkBck�2�=2�2
kg; �28�

where Ak and Bk are components of the 2K-dimensional

vector GG, Ack and Bck are those of GGc, �
2
k and Dk are the

variance and the offset coef®cient of the kth Bessel term,
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Figure 3
The averaged error of ', h�'i, and the standard deviation of ', h�'2i1=2,
for the cylindrically symmetric Gaussian distribution of coordinate errors.
Curves of h�'i against r are in (a). Those of rh�'2i1=2 against r are in (b).
When r is not too small, h�'i � 0 and rh�'2i1=2 � � or h�'2i1=2 � �=r.
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respectively. These parameters can be dissimilar for different

Bessel terms, making it dif®cult to derive an explicit formula

for the probability. Bricogne (1991) gave a generalized result

for this unequal-variance case. Expressed in terms of gener-

alized hypergeometric functions in several variables, his

formula converges impossibly slowly. The general unequal-

variance case is also considered by Baskaran & Millane

(1998).

We suggest here an alternate procedure for the calculation

of the conditional probability. Equation (28) may be rewritten

as

P�GG;GGc� �
QK
k�1

��2
k=2��2

F� expfÿ���kAk ÿ �kDkAck�2

� ��kBk ÿ �kDkBck�2�=2�2
Fg; �29�

where the �k are chosen so that

�k � �F=�k; �30�
where �F is the variance of the Bessel term with the smallest

order on the layer line l.

Three new 2K-dimensional vectors are de®ned as

HH �

�1A1

�1B1

�2A2

�2B2

..

.

�KAK

�KBK

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
�31�

HHc �

�1Ac1

�1Bc1

�2Ac2

�2Bc2

..

.

�KAcK

�KBcK

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
�32�

QQ �

�1D1Ac1

�1D1Bc1

�2D2Ac2

�2D2Bc2

..

.

�KDKAcK

�KDKBcK

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
: �33�

If the factors �2
k before the exponentials in (29) are replaced

by 1, the resultant can be represented by P�HH;HHc�. We have:

P�GG;GGc� � WP�HH;HHc�; �34�
where

W � QK
k�1

�2
k: �35�

The new function P�HH;HHc� differs from P�GG;GGc� in that all the

variances are identical for the former while they can be

dissimilar for the latter. The vectorHH is produced by changing

the components of GG as shown in (31). The ratio of lengths of

the two vectors is de®ned as

� � jHHj=jGGj: �36�

Similarly, HHc comes from GGc as shown in (32). A similar ratio

may be de®ned as:

�c � jHHcj=jGGcj: �37�

The procedure of changing vectors GG and GGc into HH and HHc

allows an unequal-variance case to be converted into an equal-

variance one. To obtain an equation for the conditional

probability for intensities, or its square root, (29) has to be

integrated over the surface of a hypersphere in the 2K-

dimensional space. Integration of this kind was completed by

Stubbs (1989) when he calculated the largest likely R factor

for ®ber diffraction; and the corresponding calculation for the

conditional probability may be found in Bricogne (1991).

After the integration of P�HH;HHc�, we obtain

P�jGGj; jGGcj� �

2KW��jGGj�2Kÿ1

�2��K�2K
F

exp ÿ�2jGGj2 � jQQj2
2�2

F

� �
� 0F1 K;

�jGGjjQQj
2�2

F

� �2
" #

; �38�

where 
2K is the surface area of a unit hypersphere of the 2K-

dimensional space, 0F1 is one of the simplest generalized

hypergeometric functions and is related to the Bessel function

(Abramowitz & Stegun, 1970, p. 377). If one rewrites (38) in

terms of the modi®ed Bessel function, it becomes

P�jGGj; jGGcj� �
W��jGGj�2Kÿ1

�2K
F

�jGGjjQQj
�2

F

� �ÿ�Kÿ1�=2

� exp ÿ�2jGGj2 � jQQj2
2�2

F

� �
IKÿ1

�jGGjjQQj
�2

F

� �
; �39�

where IKÿ1 is the modi®ed Bessel function of order �K ÿ 1�.
This equation reduces to (18) when K � 1.

The intensity-based probability function may be obtained

using a procedure analogous to that for the single-Bessel-term

case leading to the result

P�I; Ic� �
W�2Kÿ1IKÿ1

2�K ÿ 1�!�2K
F

exp ÿ�2I � jQQj2
2�2

F

� �
� 0F1 K;

�jQQjI1=2

2�2
F

� �2
" #

: �40�

If the distribution of measurement errors is a Gaussian with

variance �2
o, then we have



P�Io; Ic� �
R1
0

P�Io; I�P�I; Ic� dI �41�

� R1
0

�1=�2��1=2�o� exp�ÿ�I ÿ Io�2=2�2
o�P�I; Ic� dI: �42�

The generalized hypergeometric function in (40) can be

expanded into a series (Lebedev, 1972, p. 275), allowing the

integral to be completed by termwise integration. The condi-

tional probability, P�I; Ic�, takes the form

P�I; Ic� �
W�2Kÿ1IKÿ1

2�2K
F

exp ÿ�2I � jQQj2
2�2

F

� �
�
X1
t�0

1

ÿ�K � t�t!
�2jQQj2I

4�4
F

� �t

: �43�

Substitution of this formula into (42) gives

P�Io; Ic� �
W�2Kÿ1

2�2��1=2�o�
2K
F

exp ÿ I2
o

2�2
o

ÿ jQQj
2

2�2
F

� �
�
X1
t�0

1

ÿ�K � t�t!
�2jQQj2

4�4
F

� �t

�
Z1
0

IK�tÿ1 exp ÿ I2

2�2
o

ÿ I��2
o�ÿ 2�2

FIo�
2�2

o�
2
F

� �
dI: �44�

The integral in (44) has an analytical solution (Gradshteyn &

Ryzhik, 1994, p. 384):R1
0

x�ÿ1 exp�ÿ�x2 ÿ 
x� dx

� �ÿ���=�2���=2� exp�
2=8��Dÿ��
�2��1=2�; �45�
where Dÿ��
=�2��1=2� is a parabolic cylinder function

(Abramowitz & Stegun, 1970, p. 687). It follows thatZ1
0

IK�tÿ1 exp ÿ I2

2�2
o

ÿ I��2
o�ÿ 2�2

FIo�
2�2

o�
2
F

� �
dI

� �K�t
o ÿ�K � t� exp

��2
o�ÿ 2�2

FIo�2
16�2

o�
4
F

� �
�DÿKÿt

�2
o�ÿ 2�2

FIo

2�o�
2
F

� �
: �46�

The ®nal form of P�Io; Ic� is then

P�Io; Ic� �
�Kÿ1

o W�2Kÿ1

2�2��1=2�2K
F

exp ÿ I2
o

2�2
o

ÿ jQQj
2

2�2
F

� �
�
X1
t�0

1

t!

�o�2jQQj2
4�4

F

� �t

exp
x2

4

� �
DÿKÿt�x�; �47�

where

x � ��2
o�ÿ 2�2

FIo�=2�o�
2
F : �48�

Equation (47) reduces to (26) for the single-Bessel-term case

when K � 1.

Equations (39) and (47) are the ®nal forms used to calculate

the conditional probability and the likelihood for the case of

multiple Bessel terms. Theoretically speaking, no assumption

was made in the derivation. An unknown parameter �,

however, was introduced when converting the unequal-

variance case into the equal-variance one. Actually, this

parameter is neither observable nor computable. Assumption

or approximation has to be made to estimate its value in

implementation of likelihood calculation.

6. Parameters of likelihood

In addition to the experimental data with errors and atomic

coordinates with errors, we need some special parameters to

calculate the likelihood function. They are the offset coef®-

cient DF and the variance �F for both the single-Bessel-term

case and the multiple-term case, and the metric ratio � only

for the second case. The ®rst two parameters are related to the

variances of the atomic coordinates as shown in (19) and (20).

These equations make it possible to adjust the coordinate

variances at the same time as the whole structure is under

re®nement.

Here we show example calculations of DF and �F on the

structure of tobacco mosaic virus (TMV). This structure was

re®ned to 2:9 AÊ resolution by X-ray ®ber diffraction (Namba

et al., 1989). The atomic coordinates of TMV and speci®c

values of � are used with (15) to obtain hcos ��i. S1, S2, S3 and

S4 are then obtained with (21)±(24). Finally, DF and �F are

calculated using (19) and (20), respectively.

6.1. Offset coefficient DFDF

The offset coef®cients of TMV with � � 0:5, 0.75 and 1 AÊ

are shown in Fig. 4. DF decreases with increasing R and with

increasing � for any Bessel term on any layer line. Each curve

of DF against R on the graphics may be ®tted to a polynomial:

DF � aÿ bR2 � cR4; �49�
where a, b and c are constants for particular values of l, n and

�.

6.2. Variance �2
F�
2
F

Curves of �F versus R are shown in Fig. 5 for various values

of �. As expected, �F increases with increasing �. The

variances for any Bessel term are zero when R is less than a

critical value and quickly reach a maximum for R larger than

this critical value. In the long tail part of the curve, the

variance decreases slowly with increasing R. Curves of �F

versus R of various Bessel terms on some layer lines are shown

in Fig. 6. Both the starting point and the maximum of the curve

move to a higher value of R for a larger absolute value of n.

However, the tail parts of curves on the same layer line are

similar.

6.3. Metric ratio ��

The differences in �F 's, shown in Fig. 6, produce the prin-

cipal obstacle for calculation of the likelihood function for the

multiple-Bessel-term case. This problem may be solved by

converting to an equal-variance case as suggested above.

Components of the vector GG experience changes during the
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conversion, as do components of vector GGc, changed at the

same time, but possibly with different factors. Theoretically

speaking, the lengths of two vectors can be changed by

different ratios after the conversion from an unequal-variance

case to an equal-variance case. In other words, � and �c,

de®ned in (36) and (37), may be different. � is needed for

calculation of the likelihood function. It is, however, unob-

servable and uncomputable. On the other hand, �c may be

calculated for any structural model. The assumption we make

here is that

� � �c; �50�
i.e. the metric ratio of the `true' intensity is similar to that of

the calculated.

7. Discussion

From the point of view of statistics theory, the likelihood

function is an appropriate target for re®nement of structures

based on ®ber diffraction and is demonstrably superior to

minimization of a least-squares residual. An explicit rela-

tionship between the likelihood function and errors of atomic

coordinates in the helical structural models is necessary in

such a re®nement process.

In previous work on statistics of ®ber diffraction (Stubbs,

1989; Millane, 1989a,b, 1990a,b), only error in � was taken into

account; that of r was omitted. Furthermore, these works

assumed that the variances of Bessel functions contributing to

a point in a diffraction pattern were identical. The principal

result of these studies was estimation of the largest likely R

factors for ®ber diffraction and this result is unlikely to be

affected by these assumptions. However, for calculation of a

likelihood function, these simplifying assumptions cannot be

made.

The likelihood functions have been explicitly expressed in

terms of atomic coordinate errors in the cylindrical reference

system in this work. A cylindrical symmetry has been assumed

for the distribution of coordinate errors in a helical structure.

Figure 4
Curves of DF against R for error distribution of variance � � 0:5 AÊ (� � �), � � 0:75 AÊ (� � �) and � � 1:0 AÊ (? ? ?). They are calculated for the
structure of TMV (Namba et al., 1989). Each of the solid lines is obtained by a polynomial: aÿ bR2 � cR4.



In terms of the variance of this distribution, the formulas of

the offset coef®cient DF and the variance �F, the parameters

in the conditional probability P�GG;GGc�, have been derived. The

integral of P�GG;GGc� has been performed to obtain the ®nal

formula of the likelihood by converting the unequal-variance

problem to an equal-variance one.

APPENDIX A

The real part of a structure factor calculated from a structural

model is

Ac �
PN
j�1

fj Jn�2�Rr c
j � cos � c

j ; �51�

where r c
j and �j

c are atomic coordinates of the model with

errors

r c
j � rj ��rj �52�
� c

j � �j ���j: �53�
The difference in the real parts of the calculated and true

structure factors is

�A � Ac ÿ A �PN
j�1

�j; �54�

where

�j � fj Jn�2�R�rj ��rj�� cos��j ���j� ÿ fj Jn�2�Rrj� cos �j:

�55�
The function Jn�2�R�rj ��rj�� may be expanded in a Taylor

series. If �rj is small, it can be approximated as

Jn�2�R�rj ��rj�� � Jn�2�Rrj� � 2�R�rj J0n�2�Rrj�
� 2�2R2��rj�2J00n�2�Rrj�; �56�
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Figure 5
Curves of �F against R for error distribution of variance � � 0:5 AÊ (� � �), � � 0:75 AÊ (� � �) and � � 1:0 AÊ (? ? ?). They are calculated for the structure
of TMV (Namba et al., 1989). �F increases with increasing atomic coordinate error. �F is zero when R is smaller than a critical value and quickly reaches
its maximum after the starting point of the curve. No maximum is observed on curves of low-order Bessel terms. In the tail part of the curve, �F decreases
slowly with increasing R.
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where J0n�2�Rrj� and J00n�2�Rrj� are the ®rst and second

derivatives of Jn�2�Rrj� with respect to rj. They are obtained

by the recurrence relations of Bessel functions (Abramowitz

& Stegun, 1970, p. 361)

J0n�2�Rrj� � 1
2 �Jnÿ1�2�Rrj� ÿ Jn�1�2�Rrj�� �57�

J00n�2�Rrj� � 1
4 �Jn�2�2�Rrj� � Jnÿ2�2�Rrj� ÿ 2Jn�2�Rrj��: �58�

It was known that h�ri � 0, h�r2i � �2 and hsin ��i � 0

for noncentral atoms. Assuming that �rj and ��j vary inde-

pendently and that all atoms have the same variance �2, we

have the expected value of �j:

h�ji � fj�Jn�2�Rrj� � 2�2R2�2J00n�2�Rrj�� cos �jhcos ��ji
ÿ fj Jn�2�Rrj� cos �j: �59�

This may be rewritten as

h�ji � �hcos ��ji ÿ 1� fj Jn�2�Rrj� cos �j

� 2�2R2�2hcos ��jifj J00n�2�Rrj� cos �j: �60�

The averaged difference in A, hAi, should be a summation of

h�ji over j. If the offset coef®cient DA is de®ned by

h�Ai � �DA ÿ 1�A; �61�
we have

DA � �1=A� PN
j�1

fjhcos ��jiJn�2�Rrj� cos �j

"

� 2�2R2�2
PN
j�1

fjhcos ��jiJ00j �2�Rrj� cos �j

#
; �62�

where

Figure 6
Curves of �F against R for error distribution of variance � � 0:5 AÊ . For comparison, all curves of various Bessel terms on the same layer line are put
together in a panel. The starting point of the curve depends on the order of the Bessel term. It is at higher R for high order of Bessel term. Tail parts of the
curves on the same layer line are similar. When the difference in jnj is small, two neighboring curves on a layer line can be almost identical, e.g. the curve
for n � ÿ47, l � 6 and that for n � 51, l � 6.



A �PN
j�1

fj Jn�2�Rrj� cos �j: �63�

Substitution of (55) into the de®nition of the variance, �2
j ,

�2
j � h�2

j i ÿ h�ji2; �64�
followed by a summation over j leads to the desired result:

�2
A �

PN
j�1

f 2
j �1ÿ hcos ��ji2��Jn�2�Rrj��2�sin �j�2

� 4�2R2�2
PN
j�1

f 2
j �J0n�2�Rrj��2�cos �j�2: �65�

For random values of �j, this equation becomes (Stubbs, 1989)

�2
A � 1

2

PN
j�1

f 2
j �1ÿ hcos ��ji2��Jn�2�Rrj��2

� 2�2R2�2
PN
j�1

f 2
j �J0n�2�Rrj��2: �66�

Similar formulas can be obtained also for DB and �2
B. They

are equal to DA and �2
A, respectively. Notation of DF

(� DA � DB) and �F (� �A � �B) is used and (62), (65) are

rewritten as (19) and (20) in the text.
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